This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Try to picture these buildings of cubes in your head. Can you make them to check whether you had imagined them correctly?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you fit the tangram pieces into the outlines of these people?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outlines of these clocks?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Imagine a 3 by 3 by 3 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will have holes drilled through them?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outline of this telephone?

Eight children each had a cube made from modelling clay. They cut them into four pieces which were all exactly the same shape and size. Whose pieces are the same? Can you decide who made each set?

Can you fit the tangram pieces into the outline of this sports car?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this junk?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you find ways of joining cubes together so that 28 faces are visible?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Draw three straight lines to separate these shapes into four groups - each group must contain one of each shape.