A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

This second article in the series refers to research about levels of development of spatial thinking and the possible influence of instruction.

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the rocket?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Move just three of the circles so that the triangle faces in the opposite direction.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

What happens when you try and fit the triomino pieces into these two grids?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Here's a simple way to make a Tangram without any measuring or ruling lines.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outlines of the workmen?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Which of these dice are right-handed and which are left-handed?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outline of this goat and giraffe?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this sports car?