Have you ever wondered what it would be like to race against Usain Bolt?

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Andy wants to cycle from Land's End to John o'Groats. Will he be able to eat enough to keep him going?

Can Jo make a gym bag for her trainers from the piece of fabric she has?

Use vectors and matrices to explore the symmetries of crystals.

10 graphs of experimental data are given. Can you use a spreadsheet to find algebraic graphs which match them closely, and thus discover the formulae most likely to govern the underlying processes?

See how enormously large quantities can cancel out to give a good approximation to the factorial function.

Starting with two basic vector steps, which destinations can you reach on a vector walk?

Explore the meaning of the scalar and vector cross products and see how the two are related.

Can you make matrices which will fix one lucky vector and crush another to zero?

Which line graph, equations and physical processes go together?

Why MUST these statistical statements probably be at least a little bit wrong?

Can you sketch these difficult curves, which have uses in mathematical modelling?

Can you construct a cubic equation with a certain distance between its turning points?

How do you choose your planting levels to minimise the total loss at harvest time?

Explore the shape of a square after it is transformed by the action of a matrix.

Simple models which help us to investigate how epidemics grow and die out.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

In Fill Me Up we invited you to sketch graphs as vessels are filled with water. Can you work out the equations of the graphs?

How would you design the tiering of seats in a stadium so that all spectators have a good view?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Formulate and investigate a simple mathematical model for the design of a table mat.

Was it possible that this dangerous driving penalty was issued in error?

Explore the properties of matrix transformations with these 10 stimulating questions.

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

Invent scenarios which would give rise to these probability density functions.

Go on a vector walk and determine which points on the walk are closest to the origin.

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Are these statistical statements sometimes, always or never true? Or it is impossible to say?

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

Shows that Pythagoras for Spherical Triangles reduces to Pythagoras's Theorem in the plane when the triangles are small relative to the radius of the sphere.

Each week a company produces X units and sells p per cent of its stock. How should the company plan its warehouse space?

Match the descriptions of physical processes to these differential equations.

In this short problem, try to find the location of the roots of some unusual functions by finding where they change sign.

By exploring the concept of scale invariance, find the probability that a random piece of real data begins with a 1.

Match the charts of these functions to the charts of their integrals.