How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

Are these statistical statements sometimes, always or never true? Or it is impossible to say?

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

How do you choose your planting levels to minimise the total loss at harvest time?

Which of these infinitely deep vessels will eventually full up?

Was it possible that this dangerous driving penalty was issued in error?

How would you go about estimating populations of dolphins?

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Use vectors and matrices to explore the symmetries of crystals.

Simple models which help us to investigate how epidemics grow and die out.

Explore the shape of a square after it is transformed by the action of a matrix.

Explore the properties of matrix transformations with these 10 stimulating questions.

See how enormously large quantities can cancel out to give a good approximation to the factorial function.

Can you make matrices which will fix one lucky vector and crush another to zero?

Explore the meaning of the scalar and vector cross products and see how the two are related.

Use your skill and judgement to match the sets of random data.

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

Analyse these beautiful biological images and attempt to rank them in size order.

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

This problem explores the biology behind Rudolph's glowing red nose.

Get some practice using big and small numbers in chemistry.

Invent scenarios which would give rise to these probability density functions.

Make an accurate diagram of the solar system and explore the concept of a grand conjunction.

Use trigonometry to determine whether solar eclipses on earth can be perfect.

Go on a vector walk and determine which points on the walk are closest to the origin.

Can you sketch these difficult curves, which have uses in mathematical modelling?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

Explore the meaning behind the algebra and geometry of matrices with these 10 individual problems.

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

Which dilutions can you make using only 10ml pipettes?

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Looking at small values of functions. Motivating the existence of the Taylor expansion.

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Where should runners start the 200m race so that they have all run the same distance by the finish?

Can Jo make a gym bag for her trainers from the piece of fabric she has?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.