Simple models which help us to investigate how epidemics grow and die out.

Can you deduce which Olympic athletics events are represented by the graphs?

Which units would you choose best to fit these situations?

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

Examine these estimates. Do they sound about right?

Invent a scoring system for a 'guess the weight' competition.

How would you go about estimating populations of dolphins?

When you change the units, do the numbers get bigger or smaller?

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Which dilutions can you make using only 10ml pipettes?

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

Have you ever wondered what it would be like to race against Usain Bolt?

Can you sketch graphs to show how the height of water changes in different containers as they are filled?

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

If I don't have the size of cake tin specified in my recipe, will the size I do have be OK?

What shape would fit your pens and pencils best? How can you make it?

Get some practice using big and small numbers in chemistry.

Make your own pinhole camera for safe observation of the sun, and find out how it works.

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

Which countries have the most naturally athletic populations?

These Olympic quantities have been jumbled up! Can you put them back together again?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

Two trains set off at the same time from each end of a single straight railway line. A very fast bee starts off in front of the first train and flies continuously back and forth between the. . . .

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Analyse these beautiful biological images and attempt to rank them in size order.

Explore the relationship between resistance and temperature

This problem explores the biology behind Rudolph's glowing red nose.

Work out the numerical values for these physical quantities.

The triathlon is a physically gruelling challenge. Can you work out which athlete burnt the most calories?

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Is it cheaper to cook a meal from scratch or to buy a ready meal? What difference does the number of people you're cooking for make?

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Imagine different shaped vessels being filled. Can you work out what the graphs of the water level should look like?

How would you design the tiering of seats in a stadium so that all spectators have a good view?

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Can Jo make a gym bag for her trainers from the piece of fabric she has?

Use trigonometry to determine whether solar eclipses on earth can be perfect.

Can you draw the height-time chart as this complicated vessel fills with water?

Various solids are lowered into a beaker of water. How does the water level rise in each case?