How would you go about estimating populations of dolphins?

Analyse these beautiful biological images and attempt to rank them in size order.

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

This problem explores the biology behind Rudolph's glowing red nose.

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

10 graphs of experimental data are given. Can you use a spreadsheet to find algebraic graphs which match them closely, and thus discover the formulae most likely to govern the underlying processes?

Various solids are lowered into a beaker of water. How does the water level rise in each case?

Starting with two basic vector steps, which destinations can you reach on a vector walk?

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

Examine these estimates. Do they sound about right?

Can you work out which processes are represented by the graphs?

Simple models which help us to investigate how epidemics grow and die out.

In Fill Me Up we invited you to sketch graphs as vessels are filled with water. Can you work out the equations of the graphs?

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Can you draw the height-time chart as this complicated vessel fills with water?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

Explore the relationship between resistance and temperature

Which dilutions can you make using only 10ml pipettes?

Have you ever wondered what it would be like to race against Usain Bolt?

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

Formulate and investigate a simple mathematical model for the design of a table mat.

Get some practice using big and small numbers in chemistry.

When you change the units, do the numbers get bigger or smaller?

Work out the numerical values for these physical quantities.

Andy wants to cycle from Land's End to John o'Groats. Will he be able to eat enough to keep him going?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

Which units would you choose best to fit these situations?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

How would you design the tiering of seats in a stadium so that all spectators have a good view?

Is it cheaper to cook a meal from scratch or to buy a ready meal? What difference does the number of people you're cooking for make?

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

If I don't have the size of cake tin specified in my recipe, will the size I do have be OK?

Is it really greener to go on the bus, or to buy local?

The triathlon is a physically gruelling challenge. Can you work out which athlete burnt the most calories?

Use your skill and judgement to match the sets of random data.

Two trains set off at the same time from each end of a single straight railway line. A very fast bee starts off in front of the first train and flies continuously back and forth between the. . . .