Can you deduce which Olympic athletics events are represented by the graphs?

Which countries have the most naturally athletic populations?

Invent a scoring system for a 'guess the weight' competition.

Can you sketch graphs to show how the height of water changes in different containers as they are filled?

Which units would you choose best to fit these situations?

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

Examine these estimates. Do they sound about right?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

The triathlon is a physically gruelling challenge. Can you work out which athlete burnt the most calories?

If I don't have the size of cake tin specified in my recipe, will the size I do have be OK?

Make your own pinhole camera for safe observation of the sun, and find out how it works.

What shape would fit your pens and pencils best? How can you make it?

Which dilutions can you make using only 10ml pipettes?

When you change the units, do the numbers get bigger or smaller?

Imagine different shaped vessels being filled. Can you work out what the graphs of the water level should look like?

Use your skill and judgement to match the sets of random data.

These Olympic quantities have been jumbled up! Can you put them back together again?

Is it cheaper to cook a meal from scratch or to buy a ready meal? What difference does the number of people you're cooking for make?

Two trains set off at the same time from each end of a single straight railway line. A very fast bee starts off in front of the first train and flies continuously back and forth between the. . . .

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Simple models which help us to investigate how epidemics grow and die out.

Make an accurate diagram of the solar system and explore the concept of a grand conjunction.

Get some practice using big and small numbers in chemistry.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Use trigonometry to determine whether solar eclipses on earth can be perfect.

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Have you ever wondered what it would be like to race against Usain Bolt?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Explore the relationship between resistance and temperature

Work out the numerical values for these physical quantities.

Analyse these beautiful biological images and attempt to rank them in size order.

How would you go about estimating populations of dolphins?

Is there a temperature at which Celsius and Fahrenheit readings are the same?

Can you rank these sets of quantities in order, from smallest to largest? Can you provide convincing evidence for your rankings?

Starting with two basic vector steps, which destinations can you reach on a vector walk?

Formulate and investigate a simple mathematical model for the design of a table mat.

Is it really greener to go on the bus, or to buy local?

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?