Starting with two basic vector steps, which destinations can you reach on a vector walk?

Use trigonometry to determine whether solar eclipses on earth can be perfect.

Formulate and investigate a simple mathematical model for the design of a table mat.

Can you work out which processes are represented by the graphs?

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

In Fill Me Up we invited you to sketch graphs as vessels are filled with water. Can you work out the equations of the graphs?

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Simple models which help us to investigate how epidemics grow and die out.

If I don't have the size of cake tin specified in my recipe, will the size I do have be OK?

Get some practice using big and small numbers in chemistry.

Examine these estimates. Do they sound about right?

Make your own pinhole camera for safe observation of the sun, and find out how it works.

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Make an accurate diagram of the solar system and explore the concept of a grand conjunction.

What shape would fit your pens and pencils best? How can you make it?

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

Where should runners start the 200m race so that they have all run the same distance by the finish?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

Can Jo make a gym bag for her trainers from the piece of fabric she has?

Two trains set off at the same time from each end of a single straight railway line. A very fast bee starts off in front of the first train and flies continuously back and forth between the. . . .

Is it cheaper to cook a meal from scratch or to buy a ready meal? What difference does the number of people you're cooking for make?

Imagine different shaped vessels being filled. Can you work out what the graphs of the water level should look like?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

How would you design the tiering of seats in a stadium so that all spectators have a good view?

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Which dilutions can you make using only 10ml pipettes?

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

Can you sketch graphs to show how the height of water changes in different containers as they are filled?

Which units would you choose best to fit these situations?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

When you change the units, do the numbers get bigger or smaller?

Practice your skills of measurement and estimation using this interactive measurement tool based around fascinating images from biology.

How would you go about estimating populations of dolphins?

Andy wants to cycle from Land's End to John o'Groats. Will he be able to eat enough to keep him going?

Can you deduce which Olympic athletics events are represented by the graphs?

Analyse these beautiful biological images and attempt to rank them in size order.

This problem explores the biology behind Rudolph's glowing red nose.

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Work with numbers big and small to estimate and calulate various quantities in biological contexts.