How many winning lines can you make in a three-dimensional version of noughts and crosses?

Explore the effect of reflecting in two parallel mirror lines.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Can you describe this route to infinity? Where will the arrows take you next?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Which set of numbers that add to 10 have the largest product?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Can all unit fractions be written as the sum of two unit fractions?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Explore the effect of combining enlargements.

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

If you move the tiles around, can you make squares with different coloured edges?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

How many different symmetrical shapes can you make by shading triangles or squares?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Is there an efficient way to work out how many factors a large number has?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .