Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Explore the effect of reflecting in two parallel mirror lines.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Can all unit fractions be written as the sum of two unit fractions?

Explore the effect of combining enlargements.

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you describe this route to infinity? Where will the arrows take you next?

Can you find the area of a parallelogram defined by two vectors?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

How many different symmetrical shapes can you make by shading triangles or squares?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?