Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

Can you describe this route to infinity? Where will the arrows take you next?

Explore the effect of reflecting in two parallel mirror lines.

Is there an efficient way to work out how many factors a large number has?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

If you move the tiles around, can you make squares with different coloured edges?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Can all unit fractions be written as the sum of two unit fractions?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Can you find the area of a parallelogram defined by two vectors?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Explore the effect of combining enlargements.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

The Egyptians expressed all fractions as the sum of different unit fractions. The Greedy Algorithm might provide us with an efficient way of doing this.

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

The clues for this Sudoku are the product of the numbers in adjacent squares.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

How many different symmetrical shapes can you make by shading triangles or squares?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?