Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Explore the effect of reflecting in two parallel mirror lines.

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Can you find the area of a parallelogram defined by two vectors?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

There are lots of different methods to find out what the shapes are worth - how many can you find?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Can you describe this route to infinity? Where will the arrows take you next?

How many different symmetrical shapes can you make by shading triangles or squares?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

If you move the tiles around, can you make squares with different coloured edges?

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Explore the effect of combining enlargements.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can all unit fractions be written as the sum of two unit fractions?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

If a sum invested gains 10% each year how long before it has doubled its value?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?