Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Explore the effect of reflecting in two parallel mirror lines.

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Can you describe this route to infinity? Where will the arrows take you next?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Can all unit fractions be written as the sum of two unit fractions?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Explore the effect of combining enlargements.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Which set of numbers that add to 10 have the largest product?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Is there an efficient way to work out how many factors a large number has?

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

If you move the tiles around, can you make squares with different coloured edges?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

How many solutions can you find to this sum? Each of the different letters stands for a different number.