A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

If a sum invested gains 10% each year how long before it has doubled its value?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Which set of numbers that add to 10 have the largest product?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Can you describe this route to infinity? Where will the arrows take you next?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Can you find the area of a parallelogram defined by two vectors?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Explore the effect of reflecting in two parallel mirror lines.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

There are lots of different methods to find out what the shapes are worth - how many can you find?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Explore the effect of combining enlargements.

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

Use the differences to find the solution to this Sudoku.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .