In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

There are lots of different methods to find out what the shapes are worth - how many can you find?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

How many different symmetrical shapes can you make by shading triangles or squares?

What is the same and what is different about these circle questions? What connections can you make?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Explore the effect of reflecting in two parallel mirror lines.

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Chris and Jo put two red and four blue ribbons in a box. They each pick a ribbon from the box without looking. Jo wins if the two ribbons are the same colour. Is the game fair?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Can you describe this route to infinity? Where will the arrows take you next?

Explore the effect of combining enlargements.

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

Can you find the area of a parallelogram defined by two vectors?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?