In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Which set of numbers that add to 10 have the largest product?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

If you move the tiles around, can you make squares with different coloured edges?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

There are lots of different methods to find out what the shapes are worth - how many can you find?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Is there an efficient way to work out how many factors a large number has?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Can you maximise the area available to a grazing goat?

Using the digits 1 to 9, the number 4396 can be written as the product of two numbers. Can you find the factors?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Can you work out how to produce different shades of pink paint?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

What is the same and what is different about these circle questions? What connections can you make?

Can you describe this route to infinity? Where will the arrows take you next?

Explore the effect of reflecting in two parallel mirror lines.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Explore the effect of combining enlargements.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Can all unit fractions be written as the sum of two unit fractions?

The Egyptians expressed all fractions as the sum of different unit fractions. The Greedy Algorithm might provide us with an efficient way of doing this.

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?