An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

A plastic funnel is used to pour liquids through narrow apertures. What shape funnel would use the least amount of plastic to manufacture for any specific volume ?

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

If you move the tiles around, can you make squares with different coloured edges?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Can you describe this route to infinity? Where will the arrows take you next?

How many different symmetrical shapes can you make by shading triangles or squares?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Explore the effect of reflecting in two parallel mirror lines.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

What is the same and what is different about these circle questions? What connections can you make?

Substitute -1, -2 or -3, into an algebraic expression and you'll get three results. Is it possible to tell in advance which of those three will be the largest ?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

There are lots of different methods to find out what the shapes are worth - how many can you find?

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Two ladders are propped up against facing walls. The end of the first ladder is 10 metres above the foot of the first wall. The end of the second ladder is 5 metres above the foot of the second. . . .

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Explore the effect of combining enlargements.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.