Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

If a sum invested gains 10% each year how long before it has doubled its value?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Which set of numbers that add to 10 have the largest product?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Can you find the area of a parallelogram defined by two vectors?

Can you describe this route to infinity? Where will the arrows take you next?

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Explore the effect of reflecting in two parallel mirror lines.

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Find the decimal equivalents of the fractions one ninth, one ninety ninth, one nine hundred and ninety ninth etc. Explain the pattern you get and generalise.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Explore the effect of combining enlargements.

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Can all unit fractions be written as the sum of two unit fractions?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?