Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

There are lots of different methods to find out what the shapes are worth - how many can you find?

Explore the effect of combining enlargements.

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

Can you describe this route to infinity? Where will the arrows take you next?

Explore the effect of reflecting in two parallel mirror lines.

Can you find the area of a parallelogram defined by two vectors?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Can all unit fractions be written as the sum of two unit fractions?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?