Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you describe this route to infinity? Where will the arrows take you next?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Can all unit fractions be written as the sum of two unit fractions?

Explore the effect of reflecting in two parallel mirror lines.

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Explore the effect of combining enlargements.

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Which set of numbers that add to 10 have the largest product?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Take any four digit number. Move the first digit to the end and move the rest along. Now add your two numbers. Did you get a multiple of 11?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

Can you maximise the area available to a grazing goat?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

If you move the tiles around, can you make squares with different coloured edges?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Is there an efficient way to work out how many factors a large number has?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

A jigsaw where pieces only go together if the fractions are equivalent.

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

The Egyptians expressed all fractions as the sum of different unit fractions. The Greedy Algorithm might provide us with an efficient way of doing this.

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?