Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Is there an efficient way to work out how many factors a large number has?

What can you say about the child who will be first on the playground tomorrow morning at breaktime in your school?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

There are lots of different methods to find out what the shapes are worth - how many can you find?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

How many different symmetrical shapes can you make by shading triangles or squares?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

How many winning lines can you make in a three-dimensional version of noughts and crosses?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

If you move the tiles around, can you make squares with different coloured edges?

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Can you describe this route to infinity? Where will the arrows take you next?

Can you find rectangles where the value of the area is the same as the value of the perimeter?