Ever wondered what it would be like to vaporise a diamond? Find out inside...

Find out why water is one of the most amazing compounds in the universe and why it is essential for life. - UNDER DEVELOPMENT

Investigate why the Lennard-Jones potential gives a good approximate explanation for the behaviour of atoms at close ranges

Investigate some of the issues raised by Geiger and Marsden's famous scattering experiment in which they fired alpha particles at a sheet of gold.

Explore how can changing the axes for a plot of an equation can lead to different shaped graphs emerging

Dip your toe into the world of quantum mechanics by looking at the Schrodinger equation for hydrogen atoms

An article about the kind of maths a first year undergraduate in physics, engineering and other physical sciences courses might encounter. The aim is to highlight the link between particular maths. . . .

Investigate the effects of the half-lifes of the isotopes of cobalt on the mass of a mystery lump of the element.

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

This is the area of the advanced stemNRICH site devoted to the core applied mathematics underlying the sciences.

How does the half-life of a drug affect the build up of medication in the body over time?

An introduction to a useful tool to check the validity of an equation.

Can you work out the natural time scale for the universe?

Follow in the steps of Newton and find the path that the earth follows around the sun.

How fast would you have to throw a ball upwards so that it would never land?

A ball whooshes down a slide and hits another ball which flies off the slide horizontally as a projectile. How far does it go?

Gravity on the Moon is about 1/6th that on the Earth. A pole-vaulter 2 metres tall can clear a 5 metres pole on the Earth. How high a pole could he clear on the Moon?

This is the technology section of stemNRICH - Core.

How high will a ball taking a million seconds to fall travel?

Explore displacement/time and velocity/time graphs with this mouse motion sensor.

Find the equation from which to calculate the resistance of an infinite network of resistances.

Where will the spaceman go when he falls through these strange planetary systems?

Have you got the Mach knack? Discover the mathematics behind exceeding the sound barrier.

A look at the fluid mechanics questions that are raised by the Stonehenge 'bluestones'.

What is an AC voltage? How much power does an AC power source supply?

A look at a fluid mechanics technique called the Steady Flow Momentum Equation.

Problems which make you think about the kinetic ideas underlying the ideal gas laws.

Get some practice using big and small numbers in chemistry.

Explore the Lorentz force law for charges moving in different ways.

Look at the units in the expression for the energy levels of the electrons in a hydrogen atom according to the Bohr model.

See how the motion of the simple pendulum is not-so-simple after all.

Can you match up the entries from this table of units?

Work out the numerical values for these physical quantities.

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

Show that even a very powerful spaceship would eventually run out of overtaking power

Some explanations of basic terms and some phenomena discovered by ancient astronomers

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

Can you arrange a set of charged particles so that none of them start to move when released from rest?

Explore the rates of growth of the sorts of simple polynomials often used in mathematical modelling.

Explore the power of aeroplanes, spaceships and horses.

Things are roughened up and friction is now added to the approximate simple pendulum

Explore the energy of this incredibly energetic particle which struck Earth on October 15th 1991

A look at different crystal lattice structures, and how they relate to structural properties

Derive an equation which describes satellite dynamics.

Use trigonometry to determine whether solar eclipses on earth can be perfect.

Work in groups to try to create the best approximations to these physical quantities.