Look at the calculus behind the simple act of a car going over a step.

This is the area of the advanced stemNRICH site devoted to the core applied mathematics underlying the sciences.

Explore the rates of growth of the sorts of simple polynomials often used in mathematical modelling.

A look at the fluid mechanics questions that are raised by the Stonehenge 'bluestones'.

Explore the Lorentz force law for charges moving in different ways.

See how the motion of the simple pendulum is not-so-simple after all.

Work in groups to try to create the best approximations to these physical quantities.

How does the half-life of a drug affect the build up of medication in the body over time?

Problems which make you think about the kinetic ideas underlying the ideal gas laws.

Find out why water is one of the most amazing compounds in the universe and why it is essential for life. - UNDER DEVELOPMENT

Which line graph, equations and physical processes go together?

This is the technology section of stemNRICH - Core.

Gravity on the Moon is about 1/6th that on the Earth. A pole-vaulter 2 metres tall can clear a 5 metres pole on the Earth. How high a pole could he clear on the Moon?

How fast would you have to throw a ball upwards so that it would never land?

Can you work out the natural time scale for the universe?

How high will a ball taking a million seconds to fall travel?

Where will the spaceman go when he falls through these strange planetary systems?

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

Investigate some of the issues raised by Geiger and Marsden's famous scattering experiment in which they fired alpha particles at a sheet of gold.

Can you match up the entries from this table of units?

Look at the units in the expression for the energy levels of the electrons in a hydrogen atom according to the Bohr model.

A look at a fluid mechanics technique called the Steady Flow Momentum Equation.

What is an AC voltage? How much power does an AC power source supply?

Have you got the Mach knack? Discover the mathematics behind exceeding the sound barrier.

An introduction to a useful tool to check the validity of an equation.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Dip your toe into the world of quantum mechanics by looking at the Schrodinger equation for hydrogen atoms

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

Explore the power of aeroplanes, spaceships and horses.

Things are roughened up and friction is now added to the approximate simple pendulum

Explore the energy of this incredibly energetic particle which struck Earth on October 15th 1991

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

Ever wondered what it would be like to vaporise a diamond? Find out inside...

Some explanations of basic terms and some phenomena discovered by ancient astronomers

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

A look at different crystal lattice structures, and how they relate to structural properties

Derive an equation which describes satellite dynamics.

A think about the physics of a motorbike riding upside down

An article about the kind of maths a first year undergraduate in physics, engineering and other physical sciences courses might encounter. The aim is to highlight the link between particular maths. . . .

Show that even a very powerful spaceship would eventually run out of overtaking power

Find the equation from which to calculate the resistance of an infinite network of resistances.

Work out the numerical values for these physical quantities.

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

When you change the units, do the numbers get bigger or smaller?

Which units would you choose best to fit these situations?