In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

I start my journey in Rio de Janeiro and visit all the cities as Hamilton described, passing through Canberra before Madrid, and then returning to Rio. What route could I have taken?

Is it possible to use all 28 dominoes arranging them in squares of four? What patterns can you see in the solution(s)?

How many tricolour flags are possible with 5 available colours such that two adjacent stripes must NOT be the same colour. What about 256 colours?

The machine I use to produce Braille messages is faulty and one of the pins that makes a raised dot is not working. I typed a short message in Braille. Can you work out what it really says?

Here is a collection of puzzles about Sam's shop sent in by club members. Perhaps you can make up more puzzles, find formulas or find general methods.

In a league of 5 football teams which play in a round robin tournament show that it is possible for all five teams to be league leaders.

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

Sam displays cans in 3 triangular stacks. With the same number he could make one large triangular stack or stack them all in a square based pyramid. How many cans are there how were they arranged?

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do. . . .

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Ben has five coins in his pocket. How much money might he have?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Imagine you have six different colours of paint. You paint a cube using a different colour for each of the six faces. How many different cubes can be painted using the same set of six colours?

Sam sets up displays of cat food in his shop in triangular stacks. If Felix buys some, then how can Sam arrange the remaining cans in triangular stacks?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Four children were sharing a set of twenty-four butterfly cards. Are there any cards they all want? Are there any that none of them want?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

This challenge extends the Plants investigation so now four or more children are involved.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

You have 5 darts and your target score is 44. How many different ways could you score 44?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

A game that demands a logical approach using systematic working to deduce a winning strategy

In how many ways can a pound (value 100 pence) be changed into some combination of 1, 2, 5, 10, 20 and 50 pence coins?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Semaphore is a way to signal the alphabet using two flags. You might want to send a message that contains more than just letters. How many other symbols could you send using this code?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Using only the red and white rods, how many different ways are there to make up the other colours of rod?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you find all the different ways of lining up these Cuisenaire rods?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.