This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you find all the different ways of lining up these Cuisenaire rods?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

This challenge extends the Plants investigation so now four or more children are involved.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

If you had 36 cubes, what different cuboids could you make?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?

An environment which simulates working with Cuisenaire rods.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Investigate the different ways you could split up these rooms so that you have double the number.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?