Can you find all the different ways of lining up these Cuisenaire rods?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

This challenge extends the Plants investigation so now four or more children are involved.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Semaphore is a way to signal the alphabet using two flags. You might want to send a message that contains more than just letters. How many other symbols could you send using this code?

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

If each of these three shapes has a value, can you find the totals of the combinations? Perhaps you can use the shapes to make the given totals?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

An environment which simulates working with Cuisenaire rods.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

Four children were sharing a set of twenty-four butterfly cards. Are there any cards they all want? Are there any that none of them want?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?

This activity investigates how you might make squares and pentominoes from Polydron.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?