When you think of spies and secret agents, you probably wouldn’t think of mathematics. Some of the most famous code breakers in history have been mathematicians.

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do. . . .

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

A game that demands a logical approach using systematic working to deduce a winning strategy

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Is it possible to use all 28 dominoes arranging them in squares of four? What patterns can you see in the solution(s)?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Sam displays cans in 3 triangular stacks. With the same number he could make one large triangular stack or stack them all in a square based pyramid. How many cans are there how were they arranged?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

How many six digit numbers are there which DO NOT contain a 5?

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Semaphore is a way to signal the alphabet using two flags. You might want to send a message that contains more than just letters. How many other symbols could you send using this code?

In a league of 5 football teams which play in a round robin tournament show that it is possible for all five teams to be league leaders.

Imagine you have six different colours of paint. You paint a cube using a different colour for each of the six faces. How many different cubes can be painted using the same set of six colours?

If each of these three shapes has a value, can you find the totals of the combinations? Perhaps you can use the shapes to make the given totals?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

I start my journey in Rio de Janeiro and visit all the cities as Hamilton described, passing through Canberra before Madrid, and then returning to Rio. What route could I have taken?

Consider all of the five digit numbers which we can form using only the digits 2, 4, 6 and 8. If these numbers are arranged in ascending order, what is the 512th number?

Here is a collection of puzzles about Sam's shop sent in by club members. Perhaps you can make up more puzzles, find formulas or find general methods.

Four children were sharing a set of twenty-four butterfly cards. Are there any cards they all want? Are there any that none of them want?

How many positive integers less than or equal to 4000 can be written down without using the digits 7, 8 or 9?

The machine I use to produce Braille messages is faulty and one of the pins that makes a raised dot is not working. I typed a short message in Braille. Can you work out what it really says?

Can all but one square of an 8 by 8 Chessboard be covered by Trominoes?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Using only the red and white rods, how many different ways are there to make up the other colours of rod?

In how many ways can a pound (value 100 pence) be changed into some combination of 1, 2, 5, 10, 20 and 50 pence coins?

How many tricolour flags are possible with 5 available colours such that two adjacent stripes must NOT be the same colour. What about 256 colours?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Have a go at this game which involves throwing two dice and adding their totals. Where should you place your counters to be more likely to win?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.