In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Try grouping the dominoes in the ways described. Are there any left over each time? Can you explain why?

Have a go at this game which involves throwing two dice and adding their totals. Where should you place your counters to be more likely to win?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

An environment which simulates working with Cuisenaire rods.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Find all the numbers that can be made by adding the dots on two dice.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Can you fill in the empty boxes in the grid with the right shape and colour?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Terry and Ali are playing a game with three balls. Is it fair that Terry wins when the middle ball is red?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

If each of these three shapes has a value, can you find the totals of the combinations? Perhaps you can use the shapes to make the given totals?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Sam sets up displays of cat food in his shop in triangular stacks. If Felix buys some, then how can Sam arrange the remaining cans in triangular stacks?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

My coat has three buttons. How many ways can you find to do up all the buttons?

The Red Express Train usually has five red carriages. How many ways can you find to add two blue carriages?

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

You have 5 darts and your target score is 44. How many different ways could you score 44?

How many different shapes can you make by putting four right- angled isosceles triangles together?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Take three differently coloured blocks - maybe red, yellow and blue. Make a tower using one of each colour. How many different towers can you make?

Investigate the different sounds you can make by putting the owls and donkeys on the wheel.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?