Have a go at this game which involves throwing two dice and adding their totals. Where should you place your counters to be more likely to win?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

Find all the numbers that can be made by adding the dots on two dice.

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Can you find all the different ways of lining up these Cuisenaire rods?

How many different rhythms can you make by putting two drums on the wheel?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

This challenge extends the Plants investigation so now four or more children are involved.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

If each of these three shapes has a value, can you find the totals of the combinations? Perhaps you can use the shapes to make the given totals?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

My coat has three buttons. How many ways can you find to do up all the buttons?

Can you fill in the empty boxes in the grid with the right shape and colour?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Sam sets up displays of cat food in his shop in triangular stacks. If Felix buys some, then how can Sam arrange the remaining cans in triangular stacks?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?