# Search by Topic

#### Resources tagged with Pedagogy similar to En-counters for Two:

Filter by: Content type:
Age range:
Challenge level:

### There are 69 results

Broad Topics > Mathematics Education and Research > Pedagogy

### Peg and Pin Boards

##### Age 5 to 11

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

### Encouraging Primary Children to Work Systematically

##### Age 3 to 11

This article for primary teachers suggests ways in which to help children become better at working systematically.

### Stacks of Maths!

##### Age 5 to 14

In this article for teachers, Bernard gives an example of taking an initial activity and getting questions going that lead to other explorations.

##### Age 5 to 11

In this article for teachers, Liz Woodham describes resources on NRICH that can help primary-aged children get to grips with negative numbers.

### Learning Mathematics Through Games Series: 2.types of Games

##### Age 5 to 14

This article, the second in the series, looks at some different types of games and the sort of mathematical thinking they can develop.

### Calculating the Difference: A Discussion of the Use of Calculators in the English Primary Classroom.

##### Age 5 to 11

Clare Green looks at the role of the calculator in the teaching and learning of primary mathematics.

### Holywell Primary School and NRICH Action Research Project

##### Age 5 to 11

This article for teachers outlines one school's research project to explore how children, girls in particular, could be motivated in Maths through a more practical approach.

### Money Problems?

##### Age 5 to 7

Marion Bond investigates the skills needed in order for children to understand money.

### Placing Our Trust in Learners

##### Age 5 to 14

In this article Liz Woodham reflects on just how much we really listen to learners’ own questions to determine the mathematical path of lessons.

### I'm Stuck!

##### Age 5 to 11

Being stuck is usually thought of as being a negative state of affairs. We want our pupils to succeed, not to struggle. Or do we? This article discusses why being stuck can be fruitful.

### Number Sense Series: A Sense of 'ten' and Place Value

##### Age 5 to 7

Once a basic number sense has developed for numbers up to ten, a strong 'sense of ten' needs to be developed as a foundation for both place value and mental calculations.

### Learning Mathematics Through Games Series: 1. Why Games?

##### Age 5 to 14

This article supplies teachers with information that may be useful in better understanding the nature of games and their role in teaching and learning mathematics.

### Exploring Fractions

##### Age 5 to 11

This article, written for primary teachers, links to rich tasks which will help develop the underlying concepts associated with fractions and offers some suggestions for models and images that help. . . .

### Integrating Rich Tasks - Activity 1.5

##### Age 5 to 11

This professional development activity encourages you to investigate what pupils are doing when they problem solving.

### Integrating Rich Tasks - Activity 2.1

##### Age 5 to 11

This professional development activity looks at what teachers can do to support learners engaging with rich tasks

### Integrating Rich Tasks - Activity 3

##### Age 5 to 11

The aim of this professional development activity is to successfully integrate some rich tasks into your curriculum planning.

### Integrating Rich Tasks - Activity 1.4

##### Age 5 to 11

This professional development activity encourages you to investigate how rich tasks and problem solving link together.

### Two Heads Are Better Than One

##### Age 5 to 14

An article that reminds us about the value and importance of communication in the mathematics classroom.

### Working with Luke

##### Age 5 to 11

In this article for teachers, Liz Woodham describes conversations with Luke, aged 7, as they worked on some mathematics together.

### Breaking the Equation ' Empirical Argument = Proof '

##### Age 7 to 18

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

### Problem Solving and the New Curriculum

##### Age 5 to 11

Is problem solving at the heart of your curriculum? In this article for teachers, Lynne explains why it should be.

### Going for Games

##### Age 5 to 11

In this article for teachers, Liz Woodham describes the criteria she uses to choose mathematical games for the classroom and shares some examples from NRICH.

### Blog It

##### Age 5 to 18 Challenge Level:

Members of the NRICH team are beginning to write blogs and this very short article is designed to put the reasoning behind this move in context.

### Developing Good Team-working Skills

##### Age 5 to 18

Group work depends on effective team work. This article describes attributes of effective team work and links to "Team Building" problems that can be used to develop learners' team working skills.

### Working with Higher Attaining Mathematicians

##### Age 5 to 11

In this article for teachers, Bernard describes ways to challenge higher-attaining children at primary level.

##### Age 5 to 11

Liz Woodham describes a project with four primary/first schools in the East of England, focusing on rich mathematical tasks and funded by the NCETM.

### Maths and Creativity in Bristol

##### Age 5 to 11

This article for teachers describes NRICH's work with Creative Partnerships and three Bristol primary schools.

### Manipulatives in the Primary Classroom

##### Age 5 to 11

In this article for teachers, Jenni Back offers research-based guidance about the use of manipulatives in the classroom.

### Take a ... Geoboard

##### Age 5 to 11

This article for teachers explains why geoboards are such an invaluable resource and introduces several tasks which make use of them.

### What's the Difference Between Rich Tasks and Low Threshold High Ceiling Ones?

##### Age 3 to 11

In this article for teachers, Lynne explains the difference between 'rich tasks' and 'low threshold high ceiling' tasks, using examples from the website.

### Maths in the Victorian Classroom

##### Age 7 to 14

What was it like to learn maths at school in the Victorian period? We visited the British Schools Museum in Hitchin to find out.

### Haringey 2014-2015

##### Age 5 to 11 Challenge Level:

Find out about the five-term project (January 2014 to July 2015) which NRICH is leading in conjunction with Haringey Council, funded by London Schools Excellence Fund.

### Integrating Rich Tasks - Activity 1.1

##### Age 5 to 11

This is activity 1.1 in the series of activities designed to support professional development through integrating rich tasks. This activity looks specifically at what makes an activity "rich".

### Using Games in the Classroom

##### Age 7 to 16

Gillian Hatch analyses what goes on when mathematical games are used as a pedagogic device.

### The Development of Spatial and Geometric Thinking: 5 to 18

##### Age 5 to 16

This is the first article in a series which aim to provide some insight into the way spatial thinking develops in children, and draw on a range of reported research. The focus of this article is the. . . .

Bloom's taxonomy

### A Maths Afternoon

##### Age 5 to 11

This article describes no ordinary maths lesson. There were 24 children, mostly Years 3 and 4, and there were 17 adults working with them - mothers, fathers, one grandmother and two grandfathers, a. . . .

### Integrating Rich Tasks - Activity 1.3

##### Age 5 to 11

This professional development activity encourages you to investigate what is meant by higher-order thinking skills.

### Integrating Rich Tasks - Activity 1.2

##### Age 5 to 11

These two tasks are designed to support professional development on integrating rich tasks. You are asked to think about what problems that encourage Higher Order Thinking Skills look like.

### Learning Mathematics Through Games: 3. Creating Your Own Games

##### Age 5 to 7

Not all of us a bursting with creative game ideas, but there are several ways to go about creating a game that will assist even the busiest and most reluctant game designer.

### Outside the Box

##### Age 7 to 14

This article explores the links between maths, art and history, and suggests investigations that are enjoyable as well as challenging.

### Numbers and Notation - Ambiguities and Confusions

##### Age 5 to 7

While musing about the difficulties children face in comprehending number structure, notation, etc., it occured to the author that there is a vast array of occasions when numbers and signs are used. . . .

### Number Sense Series: Developing Early Number Sense

##### Age 5 to 7

This article for teachers suggests teaching strategies and resources that can help to develop children's number sense.

### Working Effectively with All Learners

##### Age 5 to 18

Some questions and prompts to encourage discussion about what experiences you want to give your pupils to help them reach their full potential in mathematics.

### A Japanese Mathematics Lesson

##### Age 5 to 14

Jenni Way describes her visit to a Japanese mathematics classroom.

### Meaningful Maths Trails

##### Age 5 to 11

Avril Crack describes how she went about planning and setting up a Maths trail for pupils in Bedfordshire.

### Performing Beyond Expectations - Using Sport to Motivate Students in Mathematics Lessons

##### Age 7 to 16

In this article, Alan Parr shares his experiences of the motivating effect sport can have on the learning of mathematics.