Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Here are some ideas to try in the classroom for using counters to investigate number patterns.

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this plaque design?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

Make a mobius band and investigate its properties.

Follow these instructions to make a three-piece and/or seven-piece tangram.

Can you fit the tangram pieces into the outline of Mai Ling?

Surprise your friends with this magic square trick.

Follow these instructions to make a five-pointed snowflake from a square of paper.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

Did you know mazes tell stories? Find out more about mazes and make one of your own.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

An activity making various patterns with 2 x 1 rectangular tiles.

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Can you make the birds from the egg tangram?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Can you fit the tangram pieces into the outline of this telephone?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Here is a version of the game 'Happy Families' for you to make and play.