What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Mai Ling?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outline of the rocket?

Make a cube with three strips of paper. Colour three faces or use the numbers 1 to 6 to make a die.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you make the birds from the egg tangram?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Make a cube out of straws and have a go at this practical challenge.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you visualise what shape this piece of paper will make when it is folded?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

These practical challenges are all about making a 'tray' and covering it with paper.

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Can you fit the tangram pieces into the outline of Granma T?