What shape would fit your pens and pencils best? How can you make it?

What shape and size of drinks mat is best for flipping and catching?

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

How does the time of dawn and dusk vary? What about the Moon, how does that change from night to night? Is the Sun always the same? Gather data to help you explore these questions.

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Can Jo make a gym bag for her trainers from the piece of fabric she has?

Build a scaffold out of drinking-straws to support a cup of water

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Can you fit the tangram pieces into the outline of this junk?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Here's a simple way to make a Tangram without any measuring or ruling lines.

You could use just coloured pencils and paper to create this design, but it will be more eye-catching if you can get hold of hammer, nails and string.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Can you make the birds from the egg tangram?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Exploring and predicting folding, cutting and punching holes and making spirals.

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

This is a simple paper-folding activity that gives an intriguing result which you can then investigate further.

How can you make a curve from straight strips of paper?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

How many models can you find which obey these rules?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

These practical challenges are all about making a 'tray' and covering it with paper.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.