Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of these people?

Can you cut up a square in the way shown and make the pieces into a triangle?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of these convex shapes?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of the rocket?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Little Fung at the table?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Make a cube out of straws and have a go at this practical challenge.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

These practical challenges are all about making a 'tray' and covering it with paper.

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Granma T?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Exploring and predicting folding, cutting and punching holes and making spirals.

What do these two triangles have in common? How are they related?

Can you fit the tangram pieces into the outlines of the workmen?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outlines of the chairs?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you make the birds from the egg tangram?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?