Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Use the tangram pieces to make our pictures, or to design some of your own!

Delight your friends with this cunning trick! Can you explain how it works?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of Little Ming?

Can you make the birds from the egg tangram?

A game to make and play based on the number line.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of the rocket?

Make a cube out of straws and have a go at this practical challenge.

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of the telescope and microscope?

How can you make an angle of 60 degrees by folding a sheet of paper twice?

Can you fit the tangram pieces into the outline of this goat and giraffe?

What is the greatest number of squares you can make by overlapping three squares?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Here is a version of the game 'Happy Families' for you to make and play.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this plaque design?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outlines of these clocks?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Can you fit the tangram pieces into the outline of Granma T?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these people?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the workmen?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?