These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

How can you make an angle of 60 degrees by folding a sheet of paper twice?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the workmen?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this telephone?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Exploring and predicting folding, cutting and punching holes and making spirals.

Make a flower design using the same shape made out of different sizes of paper.

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

Can you fit the tangram pieces into the outline of these convex shapes?

Can you use the interactive to complete the tangrams in the shape of butterflies?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Delight your friends with this cunning trick! Can you explain how it works?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of this sports car?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you visualise what shape this piece of paper will make when it is folded?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Use the tangram pieces to make our pictures, or to design some of your own!

Reasoning about the number of matches needed to build squares that share their sides.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?