Cut a square of paper into three pieces as shown. Now,can you use the 3 pieces to make a large triangle, a parallelogram and the square again?

What do these two triangles have in common? How are they related?

Follow these instructions to make a five-pointed snowflake from a square of paper.

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Surprise your friends with this magic square trick.

Did you know mazes tell stories? Find out more about mazes and make one of your own.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

Can you make the birds from the egg tangram?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Here is a version of the game 'Happy Families' for you to make and play.

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Using these kite and dart templates, you could try to recreate part of Penrose's famous tessellation or design one yourself.

This activity investigates how you might make squares and pentominoes from Polydron.

Make a cube with three strips of paper. Colour three faces or use the numbers 1 to 6 to make a die.

Make a mobius band and investigate its properties.

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you visualise what shape this piece of paper will make when it is folded?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Follow these instructions to make a three-piece and/or seven-piece tangram.

Here are some ideas to try in the classroom for using counters to investigate number patterns.

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

These practical challenges are all about making a 'tray' and covering it with paper.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

How can you make a curve from straight strips of paper?

This is a simple paper-folding activity that gives an intriguing result which you can then investigate further.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you fit the tangram pieces into the outline of this telephone?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?