This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Can you visualise what shape this piece of paper will make when it is folded?

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Did you know mazes tell stories? Find out more about mazes and make one of your own.

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

Can you fit the tangram pieces into the outlines of the candle and sundial?

Follow these instructions to make a five-pointed snowflake from a square of paper.

Make a flower design using the same shape made out of different sizes of paper.

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Make a mobius band and investigate its properties.

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Make a cube out of straws and have a go at this practical challenge.

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you logically construct these silhouettes using the tangram pieces?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you deduce the pattern that has been used to lay out these bottle tops?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Follow these instructions to make a three-piece and/or seven-piece tangram.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of Granma T?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.