Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Can you fit the tangram pieces into the outline of Little Ming?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you make the birds from the egg tangram?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the workmen?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outline of Mai Ling?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

These practical challenges are all about making a 'tray' and covering it with paper.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

An activity making various patterns with 2 x 1 rectangular tiles.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?