Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this sports car?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Can you fit the tangram pieces into the outline of this plaque design?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Mai Ling?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outline of these convex shapes?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

An activity making various patterns with 2 x 1 rectangular tiles.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Can you make the birds from the egg tangram?

These practical challenges are all about making a 'tray' and covering it with paper.

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this junk?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Exploring and predicting folding, cutting and punching holes and making spirals.

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?