Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of this sports car?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of the rocket?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you make the birds from the egg tangram?

Can you fit the tangram pieces into the outline of Little Fung at the table?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of Little Ming?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this plaque design?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these rabbits?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you fit the tangram pieces into the outlines of the chairs?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?