This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of this sports car?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

An activity making various patterns with 2 x 1 rectangular tiles.

Can you fit the tangram pieces into the outline of Little Ming?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Can you fit the tangram pieces into the outline of this junk?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of Mai Ling?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outline of the rocket?

Can you make the birds from the egg tangram?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of this goat and giraffe?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Can you fit the tangram pieces into the outline of these rabbits?

These practical challenges are all about making a 'tray' and covering it with paper.

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Can you fit the tangram pieces into the outlines of the chairs?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Use the tangram pieces to make our pictures, or to design some of your own!

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?