Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

These practical challenges are all about making a 'tray' and covering it with paper.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

An activity making various patterns with 2 x 1 rectangular tiles.

How many models can you find which obey these rules?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

What do these two triangles have in common? How are they related?

Can you make the birds from the egg tangram?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Exploring and predicting folding, cutting and punching holes and making spirals.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Make a cube out of straws and have a go at this practical challenge.

What shape is made when you fold using this crease pattern? Can you make a ring design?

Make a flower design using the same shape made out of different sizes of paper.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Can you visualise what shape this piece of paper will make when it is folded?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Reasoning about the number of matches needed to build squares that share their sides.