Use the tangram pieces to make our pictures, or to design some of your own!

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of Little Ming?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you make the birds from the egg tangram?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

A game to make and play based on the number line.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Make a cube out of straws and have a go at this practical challenge.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Here is a version of the game 'Happy Families' for you to make and play.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Mai Ling?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this junk?

Exploring and predicting folding, cutting and punching holes and making spirals.

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these convex shapes?

Delight your friends with this cunning trick! Can you explain how it works?

Can you fit the tangram pieces into the outline of Granma T?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?