This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you use the interactive to complete the tangrams in the shape of butterflies?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this sports car?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you logically construct these silhouettes using the tangram pieces?

Can you fit the tangram pieces into the outline of this plaque design?

Can you make the birds from the egg tangram?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of Mai Ling?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Fung at the table?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Make a cube out of straws and have a go at this practical challenge.

Exploring and predicting folding, cutting and punching holes and making spirals.

What do these two triangles have in common? How are they related?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?