Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of this plaque design?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you cut up a square in the way shown and make the pieces into a triangle?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Mai Ling?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this telephone?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you make the birds from the egg tangram?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this sports car?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Exploring and predicting folding, cutting and punching holes and making spirals.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of Granma T?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you use the interactive to complete the tangrams in the shape of butterflies?

These practical challenges are all about making a 'tray' and covering it with paper.

What do these two triangles have in common? How are they related?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Cut a square of paper into three pieces as shown. Now,can you use the 3 pieces to make a large triangle, a parallelogram and the square again?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Here are some ideas to try in the classroom for using counters to investigate number patterns.