This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Use the tangram pieces to make our pictures, or to design some of your own!

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Can you fit the tangram pieces into the outline of Little Ming?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Can you make the birds from the egg tangram?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

A game to make and play based on the number line.

Can you fit the tangram pieces into the outlines of the chairs?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

How can you make an angle of 60 degrees by folding a sheet of paper twice?

Can you fit the tangram pieces into the outlines of these clocks?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of the workmen?

If you'd like to know more about Primary Maths Masterclasses, this is the package to read! Find out about current groups in your region or how to set up your own.

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of these rabbits?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this junk?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Can you fit the tangram pieces into the outline of this telephone?

A game in which players take it in turns to choose a number. Can you block your opponent?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Granma T?

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

Delight your friends with this cunning trick! Can you explain how it works?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of these convex shapes?