Can you fit the tangram pieces into the outline of Little Ming?

Use the tangram pieces to make our pictures, or to design some of your own!

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

A game to make and play based on the number line.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Can you make the birds from the egg tangram?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Here is a version of the game 'Happy Families' for you to make and play.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this plaque design?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outline of Mai Ling?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you fit the tangram pieces into the outline of Granma T?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this junk?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

What is the greatest number of squares you can make by overlapping three squares?

How can you make an angle of 60 degrees by folding a sheet of paper twice?

Can you cut up a square in the way shown and make the pieces into a triangle?