Can you make the birds from the egg tangram?

Can you fit the tangram pieces into the outline of Little Ming?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

A game to make and play based on the number line.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Use the tangram pieces to make our pictures, or to design some of your own!

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of this plaque design?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this junk?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Make a flower design using the same shape made out of different sizes of paper.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Make a cube out of straws and have a go at this practical challenge.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

These practical challenges are all about making a 'tray' and covering it with paper.

How many models can you find which obey these rules?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

An activity making various patterns with 2 x 1 rectangular tiles.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Here's a simple way to make a Tangram without any measuring or ruling lines.