If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?

For this activity which explores capacity, you will need to collect some bottles and jars.

Can you split each of the shapes below in half so that the two parts are exactly the same?

Using a loop of string stretched around three of your fingers, what different triangles can you make? Draw them and sort them into groups.

In this activity focusing on capacity, you will need a collection of different jars and bottles.

These pictures show squares split into halves. Can you find other ways?

Here is a version of the game 'Happy Families' for you to make and play.

Can you deduce the pattern that has been used to lay out these bottle tops?

An activity making various patterns with 2 x 1 rectangular tiles.

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you make the birds from the egg tangram?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Have you ever noticed the patterns in car wheel trims? These questions will make you look at car wheels in a different way!

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Make a cube out of straws and have a go at this practical challenge.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Exploring and predicting folding, cutting and punching holes and making spirals.

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you fit the tangram pieces into the outline of this telephone?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outline of this junk?

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Watch this "Notes on a Triangle" film. Can you recreate parts of the film using cut-out triangles?

Can you see which tile is the odd one out in this design? Using the basic tile, can you make a repeating pattern to decorate our wall?

Make a flower design using the same shape made out of different sizes of paper.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

How can you make a curve from straight strips of paper?