Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.
Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.
Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?
In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?
Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.
You have a set of the digits from 0 – 9. Can you arrange these in the five boxes to make two-digit numbers as close to the targets as possible?
These pictures show squares split into halves. Can you find other ways?
Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?
If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?
This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?
Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.
What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?
Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?
NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.
Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?
Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?
An activity making various patterns with 2 x 1 rectangular tiles.
Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?
Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?
This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?
Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?
In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?
How can you put five cereal packets together to make different shapes if you must put them face-to-face?
What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?
The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?
These practical challenges are all about making a 'tray' and covering it with paper.
How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.
Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?
This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.
Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?
How many models can you find which obey these rules?
Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?
Can you fit the tangram pieces into the outlines of the candle and sundial?
Can you fit the tangram pieces into the outline of this shape. How would you describe it?
Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?
Can you fit the tangram pieces into the outlines of the chairs?
Can you fit the tangram pieces into the outlines of the workmen?
Can you fit the tangram pieces into the outline of the telescope and microscope?
Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?
Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?
How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?
Can you fit the tangram pieces into the outline of this goat and giraffe?
Can you fit the tangram pieces into the outline of these rabbits?
Can you fit the tangram pieces into the outline of the child walking home from school?
Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?
Can you fit the tangram pieces into the outlines of these people?
We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?
Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.
Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?