Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Can you make the birds from the egg tangram?

Here is a version of the game 'Happy Families' for you to make and play.

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Explore the triangles that can be made with seven sticks of the same length.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

You will need a long strip of paper for this task. Cut it into different lengths. How could you find out how long each piece is?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

In this activity focusing on capacity, you will need a collection of different jars and bottles.

Can you fit the tangram pieces into the outline of this junk?

Can you split each of the shapes below in half so that the two parts are exactly the same?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Make a chair and table out of interlocking cubes, making sure that the chair fits under the table!

These pictures show squares split into halves. Can you find other ways?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Can you put these shapes in order of size? Start with the smallest.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Can you see which tile is the odd one out in this design? Using the basic tile, can you make a repeating pattern to decorate our wall?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?