This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you make the birds from the egg tangram?

Here is a version of the game 'Happy Families' for you to make and play.

Can you make five differently sized squares from the tangram pieces?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of this plaque design?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this telephone?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

These practical challenges are all about making a 'tray' and covering it with paper.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

An activity making various patterns with 2 x 1 rectangular tiles.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outline of this junk?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?