Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Make a cube out of straws and have a go at this practical challenge.

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Exploring and predicting folding, cutting and punching holes and making spirals.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this goat and giraffe?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Can you split each of the shapes below in half so that the two parts are exactly the same?

Can you fit the tangram pieces into the outline of Little Ming?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Can you put these shapes in order of size? Start with the smallest.

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you make the birds from the egg tangram?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of these rabbits?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these convex shapes?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of this sports car?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of Granma T?