Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Can you split each of the shapes below in half so that the two parts are exactly the same?

These practical challenges are all about making a 'tray' and covering it with paper.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

How many models can you find which obey these rules?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

Use the tangram pieces to make our pictures, or to design some of your own!

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

These pictures show squares split into halves. Can you find other ways?

Make a chair and table out of interlocking cubes, making sure that the chair fits under the table!

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?