Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you use the interactive to complete the tangrams in the shape of butterflies?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of this sports car?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you cut up a square in the way shown and make the pieces into a triangle?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Exploring and predicting folding, cutting and punching holes and making spirals.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you logically construct these silhouettes using the tangram pieces?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of Granma T?

Make a flower design using the same shape made out of different sizes of paper.

Here is a version of the game 'Happy Families' for you to make and play.

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Can you make the birds from the egg tangram?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you visualise what shape this piece of paper will make when it is folded?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you put these shapes in order of size? Start with the smallest.