Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you make the birds from the egg tangram?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

An activity making various patterns with 2 x 1 rectangular tiles.

These pictures show squares split into halves. Can you find other ways?

You have a set of the digits from 0 – 9. Can you arrange these in the 5 boxes to make two-digit numbers as close to the targets as possible?

Can you split each of the shapes below in half so that the two parts are exactly the same?

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

These practical challenges are all about making a 'tray' and covering it with paper.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

How many models can you find which obey these rules?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?