Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

You have a set of the digits from 0 – 9. Can you arrange these in the 5 boxes to make two-digit numbers as close to the targets as possible?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

Can you split each of the shapes below in half so that the two parts are exactly the same?

These pictures show squares split into halves. Can you find other ways?

Make a cube out of straws and have a go at this practical challenge.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Little Fung at the table?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you make the birds from the egg tangram?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you put these shapes in order of size? Start with the smallest.

Here's a simple way to make a Tangram without any measuring or ruling lines.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Exploring and predicting folding, cutting and punching holes and making spirals.

An activity making various patterns with 2 x 1 rectangular tiles.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?